代號:38150 頁次:2-1

113年公務人員高等考試三級考試試題

類 科:環境檢驗 科 目:分析化學 考試時間:2小時

座號	•	
	•	

※注意:(一)可以使用電子計算器。

二不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三本科目除專門名詞或數理公式外,應使用本國文字作答。

- 一、取 0.3360±0.0002 g 純碳酸氫鈉(NaHCO₃,MW 84.007 g/mol)在 100℃烘箱中加熱產生碳酸鈉(Na₂CO₃,MW 105.988 g/mol),假設此生成之碳酸鈉冷卻後全部直接使用來進行鹽酸之濃度之測定,加入鹽酸 248.26±0.02 mL後反應完全。
 - (一)請寫出碳酸氫鈉反應產生碳酸鈉及鹽酸滴定碳酸鈉之反應式。(4分)
 - (二)鹽酸體積莫耳濃度之不確定度來源有那些?(4分)
 - (三)計算鹽酸之體積莫耳濃度及其相對與絕對不確定度(答案以有效數字表示),並詳述計算過程。相關分子組成原子之量及不確定度[Na(22.989770±0.000002),H(1.00798±0.00014),C(12.0106±0.0010),O(15.9994±0.0004)]依照計算結果何者可忽略不計?(12分)
- 二、25°C水溶液含有 0.0010 M NaOH、0.0150 M KNO₃ 及 0.0100 M Li₂SO₄。
 - (一)計算水溶液之離子強度。(5分)
 - □計算 H+及 OH-之活性係數、活性及 pH 值。(10 分)
 - (三)如下表所示,為何同一離子強度下,OH-之活性係數總是小於 H+?(5分)

25℃離子強度 (μ,M)	0.001	0.005	0.01	0.05	0.1
H ⁺	0.967	0.933	0.914	0.86	0.83
OH-	0.964	0.926	0.900	0.81	0.76

- 三、在 25°C, 二質子酸 0.150 g (H₂A, MW 89.09 g/mol) 以 0.10 M 之 KCl 溶 液將之溶解,並定量至 100.0 mL。
 - (-)請導出 $[H^+]$ 與 K_1 、 K_2 、二質酸濃度之關係。(10 分)
 - (二)在上述二質子酸溶液中,緩慢滴加入 10.00 mL 0.200 M 之 NaOH,配置緩衝溶液,並測得其 pH 為 9.50。由於其離子強度約為 0.10 M,二質子酸相關之離子 (HA⁻, A²⁻)之活性係數皆為 0.80,請以上述資料計算該二質子酸之 pK₂。(10 分)

- 四、若鈣離子選擇電極之偵測極限值為 $0.01\,\mu$ M,則欲將 2.75 g CaCl₂ (MW 110.98 g/mol) 配製為 250.0 mL pH 8.0 的金屬緩衝溶液作為電極內液,則需要添加幾公克之 Na₂EDTA.2H₂O (MW 372.24 g/mol)? (15 分) (Ca²⁺-EDTA 錯合物形成常數 $\log K_f = 10.65, \alpha_{V^4} = 4.2 \times 10^{-3}$)
- 五、電池由鹽橋分隔之兩半電池溶液組成,Pt | 溶液 A | 溶液 B | Pt,

A 溶液由含 1 M HClO₄ 30.0 mL 0.0500 M Cu⁺及含 1 M HClO₄ 50.0 mL 0.0100 M Ce⁴⁺混合而成。

B 溶液由含 1 M HClO₄ 20.0 mL 0.0200 M Fe²⁺及含 1 M HClO₄ 50.0 mL 0.0100 M Ce⁴⁺混合而成。

 $Cu^{2+} + e^- \rightleftharpoons Cu^+, E^0 = 0.161 \text{ V}$

 $Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}, E^{\circ} = 0.767 \text{ V}$

 $Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}, E^{\circ} = 1.70 \text{ V}$

- (一)請寫出 A、B 兩溶液之平衡反應式。(5分)
- (二)計算 A、B 兩半電池之電位及電池電位,並寫出電流經外部導線由何溶液流向何溶液。(10分)